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Abstract

Background—Naegleria fowleri is a thermophilic ameba found in freshwater that causes 

primary amebic meningoencephalitis (PAM) when it enters the nose and migrates to the brain. 

Patient exposure to water containing the ameba typically occurs in warm freshwater lakes and 

ponds during recreational water activities. In June 2016, an 18-year-old woman died of PAM after 

traveling to North Carolina, where she participated in rafting on an artificial whitewater river.

Methods—We conducted an epidemiologic and environmental investigation to determine the 

water exposure that led to the death of this patient.

Results—The case-patient's most probable water exposure occurred while rafting on an artificial 

whitewater river during which she was thrown out of the raft and submerged underwater. The 

∼11.5 million gallons of water in the whitewater facility were partially filtered, subjected to UV 

light treatment, and occasionally chlorinated. Heavy algal growth was noted. Eleven water-related 

samples were collected from the facility; all were positive for N. fowleri. Of 5 samples collected 

from the nearby natural river, 1 sediment sample was positive for N. fowleri.

Conclusions—This investigation documents a novel exposure to an artificial whitewater river as 

the likely exposure causing PAM in this case. Conditions in the whitewater facility (warm, turbid 

water with little chlorine and heavy algal growth) rendered the water treatment ineffective and 
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provided an ideal environment for N. fowleri to thrive. The combination of natural and engineered 

elements at the whitewater facility create a challenging environment to control the growth of N. 
fowleri.
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Introduction

Swimming and other recreational water activities are enjoyed by millions of Americans 

every year during the warm summer months. While these activities provide a health benefit 

in the form of physical activity, infection from waterborne pathogens can occur. An 

infrequent but severe waterborne infection is caused by Naegleria fowleri (N. fowleri), a 

free-living ameba that thrives in warm freshwater. This ameba causes primary amebic 

meningoencephalitis (PAM) when water containing the ameba enters the nose, allowing it to 

gain access to the brain via the cribriform plate. The resulting infection is fulminant, causing 

death in 97% of U.S. cases in a median of 5 days (1). PAM, as a type of meningitis, is often 

mistaken for other, more common types of meningitis and diagnosis is often made post-

mortem.

Since 1962, 143 PAM cases have been reported in the United States, predominantly among 

males and children, with most reporting recreational water exposure such as swimming, 

diving, waterskiing, or wakeboarding in lakes in the week prior to illness onset (2). 

Whitewater rafting has not been previously documented as a water exposure leading to 

PAM, and was not considered to be a risk factor because natural whitewater rivers and 

streams move swiftly and many are cooler water sources originating in the mountains. This 

contrasts with the warm, slow-moving or stagnant lakes, ponds, and rivers where most 

infections occur.

Artificial whitewater courses gained popularity with the introduction of whitewater slalom 

as an Olympic sport in 1972. Some artificial whitewater courses worldwide are built in or 

are diversions from natural streambeds. More recently, whitewater courses have been built 

that are completely manufactured as concrete channels with closed loop systems using 

recirculated water (Scott Shipley, personal communication). There are currently three closed 

loop concrete channel whitewater courses in the United States open to the general public.

Case Report

On the morning of June 17, 2016, a previously healthy 18-year-old woman presented to a 

Columbus, Ohio emergency department with a headache that began 3 days prior associated 

with fever and lethargy. She had been seen by her primary care physician who diagnosed 

possible sinusitis and prescribed amoxicillin. However, following that visit, she started 

having high fevers with progressive lethargy. In the emergency department, she had altered 

mental status, responded only to noxious stimuli, and was febrile (103°F) with a pulse of 

107 beats per minute, blood pressure of 115/69 mmHg, and respirations of 22/minute. In 

order to evaluate for meningitis, a lumbar puncture was performed revealing an opening 
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pressure of 36 cmH2O. Cerebrospinal fluid (CSF) analysis showed a white blood cell count 

of 3808 cells/μL with 78% neutrophils, 18% monocytes, and 4% lymphocytes, a red blood 

cell count of 516 cells/ μL, protein 410 mg/dL, and glucose <10 mg/dL. A computed 

tomography (CT) scan of the brain was interpreted as normal. The patient was admitted and 

treated empirically for bacterial and viral etiologies of meningitis with ceftriaxone, 

vancomycin, ampicillin, doxycycline, and acyclovir. Over the next 36 hours, she rapidly 

declined despite antimicrobial therapy and became obtunded requiring intubation and 

critical care management. A repeat CT scan of the brain showed interval increased 

effacement of cerebral sulci and decreased ventricular size compatible with diffuse cerebral 

edema. A right frontal extraventricular drain was placed revealing an intracranial pressure of 

90 cmH2O at 3:00 PM on 18 June. Strategies to try to manage the patient's elevated 

intracranial pressure included the administration of mannitol, hypertonic saline, and 

dexamethasone, hyperventilation, pentobarbital, and vasopressors to increase mean arterial 

pressure and generate cerebral perfusion pressure. Therapeutic hypothermia was also 

initiated. At this time, CSF Gram stain showed no organisms; herpes simplex and varicella 

zoster virus PCR were negative, and the diagnosis of PAM was considered given the 

patient's rapid decline and nonresponse to appropriate coverage for bacterial and viral 

meningitis. CDC was consulted on 18 June and conventional amphotericin B, fluconazole, 

azithromycin, and rifampin were added based on treatment protocols used in PAM survivors 

(3). Miltefosine, which is also part of the recommended treatment for PAM, was 

administered once it arrived from CDC, approximately 8 hours later. A wet mount of the 

CSF revealed possible motile trophozoites. Despite multiple aggressive measures, the 

patient's ICP remained > 50 cmH2O. At approximately 9 PM on 18 June, the patient had a 

sudden change in hemodynamics and an acute drop in ICP suspicious for brain death. 

Cardiac death occurred the following morning on 19 June. She received one dose of 

miltefosine prior to death. CSF arrived at CDC on 21 June and a real-time polymerase chain 

reaction (PCR) test that simultaneously detects N. fowleri, Balamuthia mandrillaris, and 

Acanthamoeba spp. was positive for N. fowleri, which was further characterized as genotype 

1.

On initial suspicion of PAM, the patient's family and friends were asked about the patient's 

freshwater exposures in the 2 weeks prior to her illness onset. The patient had recently 

returned from an 8-day youth choir trip to West Virginia and North Carolina. The patient's 

only freshwater exposure on that trip occurred during a visit to the U.S. National Whitewater 

Center (USNWC) on 8 June during which the patient fell out of the raft and was submerged 

under the water. The patient's mother reported that the patient had described the incident to 

her and reported a large volume of water entered her nose while she was submerged. No 

other freshwater exposures that resulted in water entering the nose were reported during the 

incubation period.

Environmental Investigation

The USNWC is located in Charlotte, NC on 1,100 acres near the Catawba River. Activities 

offered include whitewater rafting and kayaking, flatwater kayaking, stand-up paddle 

boarding, rock climbing, zip lines, ropes courses, a canopy tour, and mountain biking. 

Whitewater activities take place in a recirculating artificial whitewater facility. The channel 
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structures within the whitewater facility are poured concrete with a geobarrier and water 

barrier membrane below the concrete to prevent mixing with groundwater. At the time of the 

investigation, water for filling and maintaining water levels in the whitewater facility was 

obtained from onsite wells and county municipal water. At no place is river water introduced 

into the system. Storm drains and ground drainage around the site are graded to minimize 

runoff from entering the whitewater channels. However, the channels are open, so water 

levels do increase during rain storms. Additionally, there was an active construction site 

directly adjacent to the lower pond section of the whitewater channels at the time the case-

patient rafted and during this investigation.

The whitewater facility had the capacity to hold 12 million gallons of water. Multiple pumps 

were used to lift the water approximately 21 feet to an upper pond, and water then flowed by 

gravity down one of two channels. A portion of the water in the channels was withdrawn 

from the lower pond for filtration. The filtration system (filter pore size = 200 microns) was 

operated to treat a volume corresponding to the total volume of the system once every 24 

hours. After filtration, the water passed through a low-pressure ultraviolet (UV) treatment 

unit. After treatment, the water was discharged to the upper pond. Operators manually added 

liquid chlorine as a disinfectant to the upper pond only when fecal coliform counts were 

trending upward or algal growth visibly increased; however, chlorine concentrations were 

not monitored. Each evening when the facility was closed, pumps were turned off and most 

of the water drained to the lower pond; however, low levels of water always remained in the 

channels.

Sediment and algal growth were removed from the upper pond by vacuuming on an as-

needed basis when the pumps were turned off. The system was drained and cleaned 

annually, during which scrubbing and pressure washing was performed to clean the concrete 

and rock surfaces. The system was left dry for approximately two months annually. The 

facility had a contract with a commercial laboratory to perform weekly water testing for 

fecal coliform bacteria, turbidity, pH, temperature and heavy metals. On the date of 

inspection, the pumps were turned off, revealing a layer of algae and biofilm in the upper 

pond and channel surfaces.

Physical and chemical parameters were measured in water at the USNWC lower pond on 22 

June during an onsite visit by health officials. Water, facility filter backwash, submerged 

plant material, and surface swab samples were collected within the channels and the upper 

and lower ponds of the USNWC. Water, sediment, and surface swab samples were also 

collected from or near the adjacent Flatwater Dock in the Catawba River (Figure) for 

comparison. Large volume water samples (33–50 L) were collected using dead-end 

ultrafiltration (DEUF) (4); 1-L grab samples were collected in parallel. Samples were 

transported and stored in the laboratory at ambient temperature to maintain N. fowleri 
viability.

Sample processing began on the morning of 23 June. All ultrafilters and grab samples 

collected from the Catawba River and USNWC and facility filter backwash samples were 

processed using a concentration procedure; sediment, plant material, and surface swab 

samples were processed using an elution and concentration procedure (Centers for Disease 
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Control and Prevention, Division of Healthcare Quality Promotion, Environmental Surface 

Sampling Methods, 2014). Concentrates were divided; one aliquot was submitted to a N. 
fowleri real-time polymerase chain reaction (PCR) assay (“direct”) and a second aliquot was 

submitted to a culture assay (“culture”)(5, 6). Aliquots of one top pond sample and the 

Catawba River sediment sample were also submitted directly (i.e., without prior 

concentration) to the culture assay. If trophozoites or cysts were observed on a culture plate 

within 7 days of incubation at 44°C, material from the plate was harvested and submitted to 

real-time PCR for confirmation of culturable N. fowleri. Cultured organisms were genotyped 

by sequencing the 5.8S ribosomal RNA gene and internal transcribed spacers 1 and 2 (ITS1 

and ITS2)(7).

Total chlorine residual concentration measured in the lower pond of the whitewater facility 

was 0.15 mg/L and the free chlorine residual was 0.05 mg/L. The turbidity in the lower pond 

was 6.7 NTU and the temperature was 30°C. The turbidity near the Flatwater Dock in the 

Catawba River was 4.1 NTU and the temperature was 28°C.

All 11 samples collected within the whitewater facility (i.e., small and large volume water, 

facility filter backwash, and surface swab) were positive for N. fowleri by direct testing and 

by culture. Additionally, the cycle threshold (Ct) value for the direct testing performed on 

the top pond sample was comparable to those seen for culture and did not require 

concentration to detect amebae. Of the 5 samples taken from the Flatwater Dock area on the 

Catawba River (i.e., small and large volume, sediment, and surface swab), all were negative 

for N. fowleri by direct testing and one sediment sample was positive by culture (Table 1). 

All positive N. fowleri cultures were identified as genotype I.

With these findings and in consultation with local, state, and federal public health officials, 

the USNWC decided to voluntarily close their whitewater facility on 24 June until they 

could assess their water treatment operations and develop a remediation strategy.

Discussion

Each summer in the United States, 0–8 PAM cases are reported, typically in patients who 

report warm freshwater exposure in lakes, ponds, and reservoirs located in southern tier U.S. 

states. In recent years, new locations and types of water exposures have been documented in 

PAM cases including the first cases from the northern states of Minnesota, Indiana, 

Maryland, and Kansas and cases associated with the use of tap water in neti pots, for ritual 

nasal rinsing, and on backyard water slides (8-11). The case reported here represents yet 

another novel type of water exposure associated with PAM. Based on the epidemiologic 

investigation, the most likely water exposure leading to PAM in this case-patient was falling 

out of the raft at the USNWC during which a large volume of water entered the patient's 

nasal cavity. This conclusion is supported by environmental sampling that found all samples 

taken from the whitewater channels to be positive for N. fowleri genotype 1 by culture and 

direct testing.

During the site visit, health officials documented several water conditions that likely allowed 

for the presence of N. fowleri in the whitewater channels. First, the water temperature was 
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30 °C, offering an ideal temperature for a thermophilic organism like N. fowleri to thrive. 

Second, the pore size of the filtration system in use at the facility was inadequate for 

removal of microorganisms. Additionally, the water in the channels was turbid and the water 

treatment operations in use at the USNWC (i.e., ultraviolet light, occasional addition of 

chlorine) were likely inadequate to control the growth of N. fowleri in turbid water. When 

chlorine is added to turbid water with a high load of organic content, it is rapidly consumed 

and does not remain in the water to provide ongoing disinfection. While UV light 

disinfection can inactivate N. fowleri, it is ineffective when water turbidity is high (12). A 

number of factors likely contributed to the elevated turbidity in the whitewater channels and 

ponds, including the fact that it is a closed-loop system with continuous input of particulate 

matter and it utilizes a filtration system unable to remove most of these particulates. As a 

result, there was no effective water treatment occurring in the whitewater channels. Lastly, 

the biofilm growth noted on the bottom and sides of the whitewater channels also 

contributed to growth of N. fowleri in this facility. Free-living amebae, including N. fowleri, 
are frequent inhabitants of biofilms, which provide a source of nutrients as well as protection 

from disinfectants (13, 14).

While the whitewater channels provided an ideal environment for N. fowleri to thrive, it is 

not clear how the pathogen might have initially entered the water. The whitewater channels 

are drained each year and refilled annually with water primarily from the county utility (with 

supplementation from onsite wells, as needed) that meets drinking water standards, 

indicating it contains adequate residual chlorine levels, to which N. fowleri is sensitive; 

therefore, the source water is unlikely to contain N fowleri. However, as a common water 

and soil inhabitant, N. fowleri could have entered the whitewater channels through storm 

water run-off or soil blown into the channels, wildlife such as turtles or birds, or on a kayak 

that had previously been used in a natural water body.

The USNWC poses a difficult challenge in the control and prevention of N. fowleri. While it 

is an artificial water venue, it was designed to mimic the features of a natural whitewater 

river with the addition of rocks and use of uneven surfaces. Natural water bodies often 

contain N. fowleri as a natural constituent of freshwater (15-17). However, facilities can be 

designed, constructed, or maintained in ways that unintentionally encourage the proliferation 

of N. fowleri. A review of CDC surveillance data for PAM documented a number of water 

exposures that occurred in recreational water venues that had been altered in ways that might 

have increased the risk of N. fowleri infection (Table 2). Some venues added sand or 

concrete to the bottom and sides of the venue, potentially increasing surfaces for biofilm 

growth. Other venues minimally treated the water (e.g., for water clarity or aesthetics) which 

altered the microbial ecosystem and provided a perception of good water quality, but did not 

inactivate N. fowleri. In addition, some venues added water slides and tow cables (i.e., to 

pull inflatable tubes and water skiers) which altered the way humans interacted with the 

venue, resulting in an increased risk of nasal exposure to water.

In response to this PAM case and investigation, the USNWC worked to reduce the risk of 

future infections by improving the current water treatment systems. In addition to the 

existing UV light treatment, the USNWC modified the filtration systems and added 

ozonation and an automated chlorine injection system with the goal of reducing the organics 
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and maintaining a level of 0.5 ppm of free chlorine. Maintaining a chlorine residual of 0.5 

ppm has proven to be effective for preventing infections associated with drinking water 

systems that previously had PAM cases associated with them (11, 18).

A challenge for reducing the risk of PAM at this venue was that state recreational water 

regulations, as written, did not apply to this venue. Regulations exist for swimming pools 

and water parks as well as for swimming areas of lakes and reservoirs. However, facilities 

like the USNWC do not fall into either of these categories and at the time this case occurred, 

the USNWC was only required, through a lease agreement, to perform weekly testing for 

fecal coliform bacteria and meet minimum standards (<200 colonies/100 ml). These 

standards are not designed for N. fowleri control and do not account for the complex 

engineering challenges, biofilm growth, warm temperatures, and forceful nasal water entry 

in this venue. As more recreational water venues are constructed that do not meet traditional 

definitions of swimming pools or water parks, public health authorities and other state and 

local regulatory bodies will be required to make difficult decisions in the absence of 

scientific data to determine how to best regulate these venues in order to protect the public's 

health. In response to this PAM case, the local Board of Health adopted rules governing 

recreational whitewater systems for the purpose of creating an environment that is not 

hospitable to potentially pathogenic microorganisms. The primary focus of the rules includes 

disinfection (i.e., to maintain a free chlorine concentration of 0.5 ppm when a secondary 

disinfection such as ozone or ultraviolet light is active), daily water quality monitoring of pH 

and water temperature, and the documentation and removal of organic accumulation.

While tap water and the water in pools, waterparks, and other artificial water venues can be 

treated to reduce the growth of N. fowleri, there are also personal actions that can be taken to 

reduce the risk of PAM. These include keeping the head above water, holding the nose shut, 

or using nose clips when taking part in water-related activities to limit the amount of water 

going up the nose. When using water for nasal rinsing (e.g., using a neti pot or practicing 

nasal rinsing as part of ritual ablution), water should be boiled, filtered, or bought as sterile 

or distilled water. Water should not be used directly from the tap for these activities. (http://

www.cdc.gov/parasites/naegleria/prevention.html).

Since 2010, each summer in the United States has brought reports of PAM cases with newly 

identified transmission routes, new geographic areas of infection, and new types of water 

venues where exposures can occur. Once limited primarily to 15 southern-tier states, PAM 

cases have recently been reported from Minnesota (2010 and 2012), Kansas (2011), Indiana 

(2012), and Maryland (2016). PAM cases have also been reported from other countries and 

in U.S. patients who have traveled abroad(19, 20). As a thermophilic ameba, predictions of a 

warming climate have implications for the ecology of Naegleria fowleri and for infections, 

which warrants further research, monitoring, and awareness of this pathogen. Clinicians in 

all regions of the United States and internationally should be aware of this infection and 

recognize that not all patients will have the traditional exposure to warm recreational 

freshwater.
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Summary

Naegleria fowleri is a thermophilic ameba found in freshwater that causes primary 

amebic meningoencephalitis (PAM). This article describes a PAM case in an 18-year-old 

woman who was exposed to N. fowleri while rafting on an artificial whitewater river.
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Figure. Map of Whitewater Center with Water and Environmental Sampling Locations
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Table 1
N. fowleri testing results for samples collected within the U.S. National Whitewater Center 
(USNWC) and from or near the Flatwater Dock on the Catawba River

Sample Number Sample Type Direct Results* Culture Results*

USNWC Samples

1 Pod 1 backwash (0.75 L) Positive Positive

2 Pod 2 backwash (0.75 L) Positive Positive

3 Pod 3 backwash (0.75 L) Positive Positive

4 Pod 4 backwash (0.75 L) Positive Positive

5 Bottom pond small-volume water (0.75 L) Positive Positive

6 Bottom pond large-volume water (50 L) Positive Positive

7 Top pond small volume water (∼0.7 L) Positive Positive

Un-concentrated NA Positive

8 Top pond small volume water, un-concentrated (∼0.5 L) Positive NA

9 Wilderness channel surface swab (4″ × 4″)§ Positive Positive

10 Wilderness channel submerged plant material Positive Positive

11 Boat loading ramp surface swab (4″ × 4″)§ Positive Positive

Flatwater Dock at Catawba River (CR) Samples

12 CR small-volume water Negative Negative

13 CR large-volume water Negative Negative

14 CR sediment Negative Negative

Un-concentrated NA Positive

15 Flatwater Dock sub-surface swab (4″ × 4″) Negative Negative

16 Flatwater Dock above surface swab (4″ × 4″) Negative Negative

*
A sample was considered positive for N. fowleri when Ct <40

§
Location swabbed is below water level when system pumps are running

NA: not analyzed
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